Oligomerization of the cardiac ryanodine receptor C-terminal tail.

نویسندگان

  • Richard Stewart
  • Spyros Zissimopoulos
  • F Anthony Lai
چکیده

The C-terminal 100 amino acids of the RyR (ryanodine receptor), referred to as the C-terminal tail, is a highly conserved sequence that is present in all known RyR isoforms and which has been implicated in channel function. Deleting the final 15 amino acids from the full-length skeletal muscle RyR resulted in an inactive channel, attributed to impaired assembly of a tetrameric RyR complex [Gao, Tripathy, Lu and Meissner (1997) FEBS Lett. 412, 223-226]. To account for these observations, the C-terminal tail itself may be an important molecular determinant of oligomerization. Alternatively, the large N-terminal cytoplasmic domain may fold back upon itself to interact with the C-terminal tail to provide a correctly folded tetrameric structure. We explored these possibilities for RyR2 (cardiac RyR) using the yeast two-hybrid interaction assay and in vitro translation followed by immunoprecipitation and chemical cross-linking. The data indicate that the C-terminal tail of RyR2 is capable of self-tetramerization. Moreover, a truncated C-terminal tail, lacking the final 15 amino acids, failed to self-associate. These observations suggest that the intrinsic ability of the RyR C-terminal tail to self-tetramerize may be vitally important for the oligomeric assembly of the native RyR channel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dantrolene rescues aberrant N-terminus intersubunit interactions in mutant pro-arrhythmic cardiac ryanodine receptors.

AIMS The ryanodine receptor (RyR2) is an intracellular Ca(2+) release channel essential for cardiac excitation-contraction coupling. Abnormal RyR2 channel function results in the generation of arrhythmias and sudden cardiac death. The present study was undertaken to investigate the mechanistic basis of RyR2 dysfunction in inherited arrhythmogenic cardiac disease. METHODS AND RESULTS We presen...

متن کامل

N-terminus oligomerization regulates the function of cardiac ryanodine receptors.

The ryanodine receptor (RyR) is an ion channel composed of four identical subunits mediating calcium efflux from the endo/sarcoplasmic reticulum of excitable and non-excitable cells. We present several lines of evidence indicating that the RyR2 N-terminus is capable of self-association. A combination of yeast two-hybrid screens, co-immunoprecipitation analysis, chemical crosslinking and gel fil...

متن کامل

Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias

Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1-606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homolo...

متن کامل

بررسی اثر مهار گیرنده رایانیدینی(RYR) بر فعالیت پیس‌میکری

    Background & Aim: The role of ryanodine receptor(RYR) on pacemaker activity of heart cells is controversial. Some investigators have suggested that it is obligatory, while others believe it is partial and not obligatory. The principle aim of this study was once more to characterize the role of ryanodine receptor(RyR) on the pacemaker activity of the sinoatrial node(SAN) and the atrioventric...

متن کامل

N-terminus oligomerization is conserved in intracellular calcium release channels

Oligomerization of all three mammalian ryanodine receptor isoforms, a structural requirement for normal intracellular Ca2+ release channel function, is displayed by the discrete N-terminal domain which assembles into homo- and hetero-tetramers. This is demonstrated in yeast, mammalian cells and native tissue by complementary yeast two-hybrid, chemical cross-linking and co-immunoprecipitation as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 376 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2003